Reinforcement Learning Approach to Dynamic Ticket Pricing

$\rightarrow \underset{\text { U N I VE RS I T Y }}{ } \rightarrow$ Krannert School of Management

ABSTRACT

We develop a Reinforcement Learning (RL) agent that serves as a basic template for making pricing decisions as a function of time. In this scenario we use sports ticket data from an NFL partner, both sold and unsold to extract the probability of a ticket being sold a a certain price and number of days prior to a game. Using these probabilities, we derive an environment containing rewards as expected revenue from selling a ticket at a certain price level on a certain day. The RL agent then iteratively takes actions/decisions within its environment based off the state it is currently in and receives an expected revenue reward
The agent continuously iterates through its environment until it has found an optimal policy The agent continuously iterates through its environment until it has found an optimal policy field of artificial intelligence with a variety of applications that include sequential decisionmaking. Here we will show the power RL has on time-driven pricing decisions.

INTRODUCTION

While sporting tickets are often posted for sale a few months or weeks before an event, data from an NFL partner indicates that of tickets sold, 56% of these sales occur 0-2 days away from the game.

Fig 1. Histogram of Ticket Purchases by Days until Game
Key Research Questions:
Can a Reinforcement Learning agent learn an optimal pricing policy to maximize long run ticket revenue?
Can an optimal policy be obtained by using policy simulation rather than iteration?

LITERATURE REVIEW

1. Vanktesh Pandey, 2020, Deep Reinforcement Learning Algorithm for Dynamic Pricing of Express Lanes with Multiple Access Locations

Priced toll lanes based on current traffic in order to best reduce travel time
Cain, Ginting, Saporoschetz, 2020, A Dynamic Pricing Model for Professional Sports
Used a two-tiered predictive model that fed logistic regression parameters into near optimization to maximize the expected revenue for a single ticket
3. Bła zej Osínski, 2020, Simulation Based Reinforcement Learning for Real-World Autonomous Driving

RL agents have been trained in simulated environments but rarely cited that the gent's policy is determined by mass simulation
e examine Monte Carlo simulation in the policy segment of Reinforcemen _earning in our study

Brian T. Cain, Matthew A. Lanham
Purdue University, Krannert School of Management cain43@purdue.edu; lanhamm@purdue.edu

